Right Edge Restriction is non-uniform in Turkish

Kutay Serova
kserova@uchicago.edu

WAFL 16
Oct 1, 2022

THE UNIVERSITY OF
CHICAGO

Main Claims

(1) Right Edge Restriction (descriptive):

For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.

Main Claims

(1) Right Edge Restriction (descriptive):

For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.
(2) a. Josh will [vP donate __ to the library each of these novels.
b. Josh will [vp donate __ to the library], and Maria will [vp donate _ to the museum], each of these old novels. (Sabbagh, 2007, ex. 9a)

Main Claims

(1) Right Edge Restriction (descriptive):

For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.
(2) a. Josh will [vp donate _ to the library each of these novels.
b. Josh will [vp donate __ to the library], and Maria will [vp donate _ to the museum], each of these old novels. (Sabbagh, 2007, ex. 9a)
(3) a. *Josh will [vp donate __ to the library it.
b. *Josh will [vp donate __ to the library], and Maria will [vp donate __ to the museum], it.

Main Claims

(1) Right Edge Restriction (descriptive): For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.
(2) a. Josh will [vp donate _ to the library each of these novels.
b. Josh will [vp donate __ to the library], and Maria will [vp donate _ to the museum], each of these old novels. (Sabbagh, 2007, ex. 9a)
(3) a. *Josh will [vp donate __ to the library it.
b. *Josh will [vp donate __ to the library], and Maria will [vp donate __ to the museum], it.

Epiphenomal, resulting from two mechanisms:

Main Claims

(1) Right Edge Restriction (descriptive): For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.
(2) a. Josh will [vp donate _ to the library each of these novels.
b. Josh will [vp donate __ to the library], and Maria will [vp donate _ to the museum], each of these old novels. (Sabbagh, 2007, ex. 9a)
(3) a. *Josh will [vp donate __ to the library it.
b. *Josh will [vp donate __ to the library], and Maria will [vp donate __ to the museum], it.

Epiphenomal, resulting from two mechanisms:

- Constituent-sharing structures (syntactic movement)

Main Claims

(1) Right Edge Restriction (descriptive): For X to be shared at the right edge of a coordination, X must be able to be rightmost within each conjunct.
(2) a. Josh will [vp donate _ to the library each of these novels.
b. Josh will [vp donate __ to the library], and Maria will [vp donate _ to the museum], each of these old novels. (Sabbagh, 2007, ex. 9a)
(3) a. *Josh will [vp donate __ to the library it.
b. *Josh will [vp donate __ to the library], and Maria will [vp donate __ to the museum], it.

Epiphenomal, resulting from two mechanisms:

- Constituent-sharing structures (syntactic movement)
- String-sharing structures (post-syntactic linearization)

Proposal

- Constituent-sharing structure: Across-the-board rightward extraposition (Ross, 1967; Sabbagh, 2007)
- String-sharing structure: Post-syntactic linearization of in-situ multidominance

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure

4 Linearization

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure

4 Linearization

Right Edge Sharing

(4) Sharing finite verb

Ali çay _ , Veli kahve __, (ve) Ayşe de gazoz iç-ti.
A. tea V. coffee and Ay. Contr soda drink-past 'Ali (drank) tea, Veli (drank) coffee, and Ayșe drank soda.'

Right Edge Sharing

(4) Sharing finite verb

Ali çay __, Veli kahve __, (ve) Ayşe de gazoz iç-ti.
A. tea V. coffee and Ay. CONTR soda drink-Past 'Ali (drank) tea, Veli (drank) coffee, and Ayșe drank soda.'
(5) Sharing inflectional affixes

Ali çay iç-miş _ , (ve) Ayşe de gazoz iç-ecek=ti.
A. tea drink-PFV and Ay. CONTR soda drink-fut=PAST
'Ali (had) drank tea, and Ayșe was going to drink soda.'

Right Edge Sharing

(4) Sharing finite verb

Ali çay __, Veli kahve __, (ve) Ayşe de gazoz iç-ti.
A. tea V. coffee and Ay. CONTR soda drink-past 'Ali (drank) tea, Veli (drank) coffee, and Ayșe drank soda.'
(5) Sharing inflectional affixes

Ali çay iç-miş __, (ve) Ayşe de gazoz iç-ecek=ti.
A. tea drink-PFV and Ay. CONTR soda drink-FUT=PAST
'Ali (had) drank tea, and Ayșe was going to drink soda.'
(6) Sharing scrambled argument

Ali bugün gid-ecek _ , (ve) Veli de yarın gid-ecek
A. today go-FUT and V. CONTR tomorrow go-FUT

Ankaraya.
An.-dat
'Ali will go (to Ankara) today, Veli will go to Ankara tomorrow.

Right Edge Sharing

String Sharing Structure

(4) Sharing finite verb

Ali çay __, Veli kahve __, (ve) Ayşe de gazoz iç-ti.
A. tea V. coffee and Ay. CONTR soda drink-Past 'Ali (drank) tea, Veli (drank) coffee, and Ayșe drank soda.'
(5) Sharing inflectional affixes

Ali çay iç-miş __, (ve) Ayşe de gazoz iç-ecek=ti.
A. tea drink-PFV and Ay. CONTR soda drink-FUT=PAST
'Ali (had) drank tea, and Ayșe was going to drink soda.'

Constituent Sharing Structure

(6) Sharing scrambled argument

Ali bugün gid-ecek __, (ve) Veli de yarın gid-ecek
A. today go-FUT and V. CONTR tomorrow go-FUT

Ankaraya.
An.-dat
'Ali will go (to Ankara) today, Veli will go to Ankara tomorrow.

Not Low Coordination

(7)

Not Low Coordination

Not Low Coordination

(8)

Not Low Coordination

(10)

Not Low Coordination

(10)

- Tense+person Inflection (+predicate/copula) occupies T (Kelepir, 2001; Kornfilt, 1996; Zanon, 2014).
(11) Conjunct-internal T in Constituent-Sharing Structure Ali _ demle-di __, (ve) Veli __ iç-ti çayı. A. brew-past and V. drink-past tea-ACC
'Ali brewed and Veli drank the tea.'

Not Low Coordination

(10)

- Tense+person Inflection (+predicate/copula) occupies T (Kelepir, 2001; Kornfilt, 1996; Zanon, 2014).
- Each conjunct contains positions above TP.
(11) Specific agent (spec.TP) in Constituent-Sharing Structure Ali __ demle-di, (ve) Veli iç-ti çayı.
A. brew-PaSt and V. drink-PAST tea-ACC
'Ali brewed and Veli drank the tea.'
(12) Specific agent (spec.TP) in String-Sharing Structure Ali çayı __, (ve) Veli kahveyi iç-ti.
A. tea-ACC and V. coffee-ACC drink-PAST
'Ali drank the tea and Veli drank the coffee.'

Not Low Coordination

(10)

- Tense+person Inflection (+predicate/copula) occupies T (Kelepir, 2001; Kornfilt, 1996; Zanon, 2014).
- Each conjunct contains positions above TP.
(11) Scrambling above high subject in Constituent-Sharing Structure Dün Ayşe _ getirdi, bugün de Gülin _ getirdi kitapları. yesterday A. brought today CONTR G. brought books
'Yesterday Ayşe brought, and today Gülin brought the magazines.'
(12) Scrambling above high subject in String-Sharing Structure Dün kitapları Ayşe _, dergileri de Gülin getirdi. yesterday books A. magazines CONTR G. brought 'Yesterday Ayșe (brought) the books, and Gülin brought the magazines.'

Not Low Coordination

(10)

- Tense+person Inflection (+predicate/copula) occupies T (Kelepir, 2001; Kornfilt, 1996; Zanon, 2014).
- Each conjunct contains positions above TP.
(11) Left-Edge Contrastive Topics in Constituent-Sharing Structure

Dün \quad Ayşe _ getirdi, bugün =de Gülin __ getirdi kitapları. yesterday A. brought today CONTR G. brought books
'Yesterday Ayşe brought, and today Gülin brought the magazines.'
(12) Left-Edge Contrastive Topics in String-Sharing Structure

Kitapları bana Ayşe __, dergileri =de bana Gülin getirdi.
books 1SG-DAT A. magazines CONTR 1SG-DAT G. brought
'Ayșe brought the books, and Gülin brought the magazines to me.'

Not Low Coordination

- Tense+person Inflection (+predicate/copula) occupies T (Kelepir, 2001; Kornfilt, 1996; Zanon, 2014).
- Each conjunct contains positions above TP.

Takeaway

$$
\text { conjunct size } \geq \text { ContrTopP }
$$

Conjunct-internal Generation

(11) Lexical Selection in Constituent-Sharing Structure Ali bıktı _ , (ve) Veli de nefret etti __, ben-den/*-i. Ali got_fed_up and Veli CONTR hate did 1SG-abl/*-aCC 'Ali got fed up with __, and Veli came to hate me.'

Conjunct-internal Generation

Lexical Selection in Constituent-Sharing Structure Ali bıktı _ , (ve) Veli de nefret etti _ , ben-den/*-i. Ali got_fed_up and Veli CONTR hate did 1SG-abl/*-aCC 'Ali got fed up with __, and Veli came to hate me.'
(12) Lexical Selection in String-Sharing Structure

Ali ben-den/*-i __, (ve) Veli de sen-den/*-i
Ali 1SG-abl/-*ACC and Veli CONTR 2SG-abl/*-aCC
biktı.
got_fed_up
'Ali got fed up with me, and Veli got fed up with you.'

Conjunct-internal Generation

(11) Lexical Selection in Constituent-Sharing Structure Ali bıktı _ , (ve) Veli de nefret etti __, ben-den/*-i. Ali got_fed_up and Veli CONTR hate did 1SG-abl/*-aCC 'Ali got fed up with __, and Veli came to hate me.'
(12) Lexical Selection in String-Sharing Structure

Ali ben-den/*-i __, (ve) Veli de sen-den/*-i
Ali 1SG-ABL/-*ACC and Veli CONTR 2SG-ABL/*-aCC
biktı.
got_fed_up
'Ali got fed up with me, and Veli got fed up with you.'

Takeaway

shared element originates conjunct-internally

Right Edge Restriction (RER)

(13) a. [Ali _ içti çay-1].
A. drank tea-ACC
b. *[Ali _ demledi] ve Veli çay-ı içti.
A. brewed and V. tea-ACC drank
c. [Ali __ demledi] ve Veli __ içti çay-ı.
A. brewed and V. drank tea-ACC int'd: 'Ali brewed, and Veli drank the tea.'

Right Edge Restriction (RER)

(13) a. [Ali __ içti çay-1].
A. drank tea-ACC
b. *[Ali _ demledi] ve Veli çay-ı içti.
A. brewed and V. tea-ACC drank
c. [Ali __ demledi] ve Veli __ içti çay-ı. A. brewed and V. drank tea-ACC int'd: 'Ali brewed, and Veli drank the tea.'
(14) a. *[Ali __ içti çay].
A. drank tea
b. *[Ali __ demledi] ve Veli çay içti.
A. brewed and V. tea drank
c. *[Ali __ demledi] ve Veli __ içti çay.
A. brewed and V. drank tea
int'd: 'Ali brewed, and Veli drank the tea.'

Taking Stock

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark

Taking Stock

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark

- Let us start with analysing the constituent-sharing structure

Taking Stock

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark

- Let us start with analysing the constituent-sharing structure
- The predictions of this analysis do not hold for the string-sharing structure

Taking Stock

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark

- Let us start with analysing the constituent-sharing structure
- The predictions of this analysis do not hold for the string-sharing structure
- String-sharing structures are in situ parallel merge.

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure
(4) Linearization

Targeting Constituents

- Can target any constituent, regardless of category.

Targeting Constituents

- Can target any constituent, regardless of category.
(15) Ali bağışladı __, (ve) Veli de sattı defter-ler-in-i.

Ali donated and Veli CONTR sold notebook-PL-Poss-aCC
'Ali donated, and Veli donated his notebooks.'

Targeting Constituents

- Can target any constituent, regardless of category.
(15) Ali bağışladı _ , (ve) Veli de sattı defter-ler-in-i.

Ali donated and Veli CONTR sold notebook-PL-Poss-aCC
'Ali donated, and Veli donated his notebooks.'

- Cannot target share affixes/non-constituents at the right edge.

Targeting Constituents

- Can target any constituent, regardless of category.
(15) Ali bağışladı __, (ve) Veli de sattı defter-ler-in-i.

Ali donated and Veli CONTR sold notebook-PL-Poss-aCC
'Ali donated, and Veli donated his notebooks.'

- Cannot target share affixes/non-constituents at the right edge.
(16) *Ali bağışladı kitap-__, (ve) Veli de bağışladı

Ali donated book and Veli CONTR donated
defter-ler-in-i.
notebook-PL-POSS-ACC
int'd: 'Ali donated his books, and Veli donated his notebooks.'

Island Bounded

(17) Control: unshared sentence Ali bulmuş [yaz-dığ-1m mektubu Ayşe-ye] $]_{\text {RC }}$, A. found write-REL-1.POSS letter Veli de yakmış [ada-dığ-ın Ay.-dat
V. CONTR burned dedicate-REL-2.poss poems J.-dat 'Ali found [the letter that I wrote to Ayșe], and Veli burned [the poems you dedicated to Jale].'

Island Bounded

(17) Test: sharing of relative clause-internal argument *Ali bulmus [yaz-dığ-ım mektub-u __ $]_{\mathrm{RC}}$,
A. found write-REL-1.POSS letter

Veli de yakmış [ada-dığ-1n şirleri __] RC
V. CONTR burned dedicate-REL-2.Poss poems

Ayşe-ye.
Ay.-dat
int'd: 'Ali found [the letter that I wrote to Ayșe], and Veli burned [the poems you dedicated to Ayșe].

Analysis: Across-the-board Extraction

- Across-the-board movement (Ross, 1967; Sabbagh, 2007)
- category-agnostic, targets any argument/adjunct $\Rightarrow \overline{\mathrm{A}}$-movement triggered by $\left[\mathrm{F}_{\text {extr }}\right]$.
- Assuming rightward extraposition, but remnant movement account also possible.

Analysis: Across-the-board Extraction

Analysis: Across-the-board Extraction

Deriving the RER

(18) a. $\stackrel{* \text { Ali }}{\text { A. }} \underset{\text { iccti çay }}{\text { drank tea }}$.
b. *[Ali _ demledi] ve Veli çay içti.
A. brewed and V. tea drank
c. *[Ali __ demledi] ve Veli __ içti çay.
A. brewed and V. drank tea
int'd: 'Ali brewed, and Veli drank the tea.'
(19)

(20)

Predictions

- only constituents can move
- bounded by movement constraints (esp. islands)

Predictions

- only constituents can move
- bounded by movement constraints (esp. islands)

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark
Target		any constituent
Non-constituent target		x
Bound by islands		\checkmark

Predictions

- only constituents can move
- bounded by movement constraints (esp. islands)

	String-sharing	Constituent-sharing
ContrTopP-size coordination	\checkmark	\checkmark
Conjunct-internal generation	\checkmark	\checkmark
Right Edge Restriction	\checkmark	\checkmark
Target	pred + adjacent	any constituent
Non-constituent target	\checkmark	x
Bound by islands	x	\checkmark

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure

4 Linearization

Targeting Strings

(21) Ali ünlü bir şair-in kitab-ın-1 al-mak Ali famous one poet-GEN book-3.POSS-ACC buy-INF
isti-yor $=$ Ø-du, want-PROG $=\mathbf{C O P}$-PAST
Veli de ünlü bir tarihçi-nin kitab-ın-1
Veli CONTR famous one historian-GEN book-3.POSS-ACC al-mak isti-yor $=$ Ø-du. buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in kitab-ın-1 al-mak Ali famous one poet-GEN book-3.POSS-ACC buy-INF
isti-yor $=$ \qquad
want-PROG
Veli de ünlü bir tarihçi-nin kitab-m-1
Veli CONTR famous one historian-GEN book-3.POSS-ACC al-mak isti-yor $=$ Ø-du. buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in kitab-m-1
al-mak \qquad ,
Ali famous one poet-GEN book-3.POSS-ACC buy-INF

Veli de ünlü bir tarihçi-nin kitab-m-1
Veli CONTR famous one historian-GEN book-3.POSS-ACC
al-mak isti-yor $=$ Ø-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in kitab-ın-1

Ali famous one poet-GEN book-3.POSS-ACC

Veli de ünlü bir tarihçi-nin kitab-m-1
Veli CONTR famous one historian-GEN book-3.POSS-ACC
al-mak isti-yor $=\varnothing$-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in kitab-ın- \qquad
\qquad ,
Ali famous one poet-GEN book-3.POSS

Veli de ünlü bir tarihçi-nin kitab-ın-1
Veli CONTR famous one historian-GEN book-3.poss-ACC
al-mak isti-yor $=\varnothing$-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) ?Ali ünlü bir şair-in kitap-

Ali famous one poet-GEN book

Veli de ünlü bir tarihçi-nin kitab-1n-1
Veli CONTR famous one historian-GEN book-3.poss-ACC
al-mak isti-yor $=\varnothing$-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in kitap-

Ali famous one poet-GEN book

Veli de ünlü bir tarihçi-nin kitab-1n-1
Veli CONTR famous one historian-GEN book-3.poss-ACC
al-mak isti-yor $=\varnothing$-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair-in

Ali famous one poet-GEN

Veli de ünlü bir tarihçi-nin kitab-ın-1
Veli CONTR famous one historian-GEN BOOK-3.POSS-ACC
al-mak isti-yor $=$ Ø-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

(21) Ali ünlü bir şair- \qquad Ali famous one poet

Veli de ünlü bir tarihçi-nin kitab-ın-1
Veli CONTR famous one historian-GEN BOOK-3.POSS-ACC
al-mak isti-yor $=\varnothing$-du.
buy-INF want-PROG=COP-PAST
'Ali wanted to buy the book of a famous poet, and Veli wanted to buy the book of a famous historian.'

Targeting Strings

Takeaway

can share any string of (identical) adjacent morphemes from right edge

Unbounded by Islands

(21) Control: unshared sentence

Ali $\left[[\text { Fransız yazar-lar-ın yaz-dığ-1 }]_{\mathrm{RC}} \text { roman-lar-1 }\right]_{\mathrm{DP}}$
A. French writer-PL-GEN write-REL-Poss novel-PL-ACC
sev-iyor, ve
like-prog and
Veli de [[Alman yazar-lar-ın yaz-dı̆̆-1 $]_{R C}$
V. CONTR german writer-PL-GEN write-REL-POSS
roman-lar-1 $]_{\text {DP }}$ sev-iyor.
novel-pl-acc like-PRog
'Ali likes (novels that) French (authors wrote), and Veli likes novels that German authors wrote.'

Unbounded by Islands

(22) Test: sharing material crossing relative clause boundary Ali [[Fransiz _ _ $\left.]_{\mathrm{RC}} \ldots\right]_{\mathrm{DP}} \ldots$, ve
A. French
and

Veli de [[Alman yazar-lar-1n yaz-dığ-1] $]_{\mathrm{RC}}$
V. CONTR german writer-PL-GEN write-REL-Poss
roman-lar-1] ${ }_{\text {DP }}$ sev-iyor.
novel-pl-Acc like-prog
'Ali likes (novels that) French (authors wrote), and Veli likes novels that German authors wrote.'

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish
- Right Edge Restriction is derived from linearization of parallel-merged nodes (Bachrach and Katzir, 2009, 2017; Citko, 2017, 2018; Gračanin-Yüksek, 2007).

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish
- Right Edge Restriction is derived from linearization of parallel-merged nodes (Bachrach and Katzir, 2009, 2017; Citko, 2017, 2018; Gračanin-Yüksek, 2007).

I propose:

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish
- Right Edge Restriction is derived from linearization of parallel-merged nodes (Bachrach and Katzir, 2009, 2017; Citko, 2017, 2018; Gračanin-Yüksek, 2007).

I propose:

- Shared elements are parallel merged nodes,

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish
- Right Edge Restriction is derived from linearization of parallel-merged nodes (Bachrach and Katzir, 2009, 2017; Citko, 2017, 2018; Gračanin-Yüksek, 2007).

I propose:

- Shared elements are parallel merged nodes,
- Parallel merged nodes stay in-situ,

Analysis: In-situ Parallel Merge

- Sensitive to strings of morphemes \Rightarrow PF-interface
- Predicate + adjacent $=$ right-edge in head-final Turkish
- Right Edge Restriction is derived from linearization of parallel-merged nodes (Bachrach and Katzir, 2009, 2017; Citko, 2017, 2018; Gračanin-Yüksek, 2007).

I propose:

- Shared elements are parallel merged nodes,
- Parallel merged nodes stay in-situ,
- Linearization of sisters is controlled by a direction-sensitive Sister Linearization Principle.

Analysis: In-situ Parallel Merge

(23) Ali çay __ ve Veli de kahve içti.
A. tea and V . CONTR coffee drank

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure

4 Linearization

Sister Linearization Principle

(24) a. Sister Linearization Principle:

Given the structure in (b), all terminal nodes completely dominated by A in C , precede all terminals dominated by B .
b.

Sister Linearization Principle

(24) a. Sister Linearization Principle:

Given the structure in (b), all terminal nodes completely dominated by A in C , precede all terminals dominated by B .
b.

(25) Complete Domination: A node α completely dominates a node β in γ iff
a. $\quad \gamma$ dominates α and β,
b. and every path from β to γ contains α.

Example Derivation

Example Derivation

$$
\begin{aligned}
\qquad c ̧ a y & <i c- \\
\text { kahve } & <i c ̧-
\end{aligned}
$$

$\{c, a y, k a h v e\}<i c-$

Example Derivation

$$
\begin{aligned}
& \{\text { cay, iç- }\}<-\varnothing \\
& \{\text { kahve, iç- }\}<-\varnothing
\end{aligned}
$$

$\{c a y$, kahve $\}<i c ̧-<-\varnothing$

Example Derivation

$$
\begin{aligned}
&\{c a y, ~ i c-,- \\
&\{\text { kahve, } i c-,-\varnothing\}<-D I \\
&<-D I
\end{aligned}
$$

$\{c$ cay, kahve $\}<i c-<-\varnothing<-D I$

Example Derivation

$$
\begin{gathered}
\text { Ali }<\{\text { \{cay, ic--, - } \varnothing,-D /\} \\
\text { Veli }<\{\text { kahve, ic-, }-\varnothing,-D /\}
\end{gathered}
$$

$\{$ Ali, Veli, çay, kahve $\}<i c-<-\varnothing<-D I$
Ali < çay, Veli < kahve

Example Derivation

$$
\text { ve }<\{\text { Veli, kahve, ic-, }-\varnothing,-D /\}
$$

$\{$ Ali, Veli, ve, çay, kahve $\}<i c ̧-<-\varnothing<-D I$

$$
\text { Ali < çay, ve }<\text { Veli }<\text { kahve }
$$

Example Derivation

$\{$ Ali, çay $\}<\{$ ve, Veli, kahve, $i c-,-\varnothing,-D /\}$

Ali $<$ çay $<$ ve $<$ Veli $<$ kahve $<i c ̧-<-\emptyset<-D I$

Why is the right sister special?

- no Left Edge String-Sharing structures in Turkish, contra Bachrach and Katzir, 2009, 2017
(26) a. *kitap-çı ve __-lık
book-seller and __-thing int'd: 'the bookseller and the bookcase'
b. *Kitap-çı __-lık-lar-1 sildi.
book-seller __-thing-PL-ACC wipe-PAST int'd: 'The bookseller wiped the bookcases.'
c. *na:-mümkün ve __-mükemmel

NEG-possible and __-perfect int'd: 'impossible and imperfect'

- Empirically, right edge appears to be special.
- Why? Still mysterious... but for later work.

References

Bachrach, Asaf and Roni Katzir (2009). "Right-node raising and delayed spellout". In: Interphases: Phase-theoretic investigations of linguistic interfaces.

- (2017). "Linearizing structures". In: Syntax 20.1. Citko, Barbara (2017). "Right Node Raising". In: The Wiley Blackwell Companion to Syntax, Second Edition. John Wiley Sons, Ltd. ISBN: 9781118358733. - (2018). "On the relationship between forward and backward gapping". In: Syntax 21.1. Gračanin-Yüksek, Martina (2007). "About sharing". PhD thesis. Massachusetts Institute of Technology. Kelepir, Meltem (2001). "Topics in Turkish syntax: Clausal structure and scope". PhD thesis. MIT. Kornfilt, Jaklin (1996). "On Copular Clitic Forms in Turkish". In: ZAS Papers in Linguistics 6. Öztürk, Balkız (2005). "Pseudo-incorporation of agents". In: University of Pennsylvania Working Papers in Linguistics 11.1. Ross, John Robert (1967). "Constraints on variables in syntax". PhD thesis. MIT. Sabbagh, Joseph (2007). "Ordering and linearizing rightward movement". In: Natural Language \& Linguistic Theory 25.2. Zanon, Ksenia (2014). "On the Status of TP in Turkish". In: Studies in Polish Linguistics 9.3.

Roadmap

(1) Right Edge Sharing
(2) Constituent-sharing structure
(3) String-sharing structure

4 Linearization

Cannot Move Right + Parallel Merge!

(27) Ungrammatical suffix sharing on extraposed argument *Ali __i satın aldı $[$ kitap-__j] , Veli de kaybetti A. buy-PAST book V. CONTR lose-PAST kitab- $\mathbf{1}_{j}$.
book-ACC.
'Ali bought, and Veli lost the book.'

- Claim: Elements strictly containing parallel merged elements cannot (overtly) move
- Solution: Internal merge has to reconstruct for elements containing parallel merged nodes (cf. low copy spellout).

Move Right + Parallel Merge?

Move Right + Parallel Merge?

- Until now:

Move Right + Parallel Merge?

- Until now:
- Predicate + adjacent $=$ string sharing

Move Right + Parallel Merge?

- Until now:

■ Predicate + adjacent $=$ string sharing

- Argument $=$ constituent sharing

Move Right + Parallel Merge?

- Until now:

■ Predicate + adjacent $=$ string sharing
■ Argument $=$ constituent sharing

- Hypothetical: What about parallel merged affixes on an argument + conjunct-internal rightward extraposition?

Move Right + Parallel Merge?

- Until now:

■ Predicate + adjacent $=$ string sharing
■ Argument $=$ constituent sharing

- Hypothetical: What about parallel merged affixes on an argument + conjunct-internal rightward extraposition?

Linearization of Internal Merge

(28) Branch Pruning (1st pass, cf. basic copy deletion) Sever a connection from an internally moved node to immediately dominating node(s) in the PF-interface representation for:
a. covert movement: all branches expect the mother on the longest path to the root,
b. overt movement: all branches expect the mother on the shortest path to the root.

Linearization Definitions

(29) a. Sister Linearization Principle:

Given the structure in (b), all terminal nodes completely dominated by A in C, precede all terminals dominated by B .
b.

(30) Domination: A node α dominates a node β iff
a. α is the mother of β, or
b. α dominates a node γ such that γ dominated β, or
c. $\quad \alpha=\beta$.
(31) Complete Domination: A node α completely dominates a node β in γ iff
a. γ dominates α and β,
b. and every path from β to γ contains α.

Example RER-Violation Derivation

(32) *Ali çay __=ti, ve Veli kahve iç-ecek=ti.
A. tea $=$ PAST and V. coffee drink-FUT=PAST

Example RER-Violation Derivation

(32) *Ali çay __=ti, ve Veli kahve iç-ecek=ti.
A. tea $=$ PAST and V. coffee drink-FUT=PAST
$\{$ çay, ic--, $-A c A K\}<=D I$
$\{$ kahve, iç-, $-A c A K\}<=D I$

Example RER-Violation Derivation

(32) *Ali çay __=ti, ve Veli kahve iç-ecek=ti.
A. tea $=$ PAST and V. coffee drink-FUT=PAST

Linearization of Parallel Merge

Why not LCA Linearization?

- Citko, 2017, 2018; Gračanin-Yüksek, 2007 require remnant movement of all arguments to positions above parallel merged predicate (asymmetric c-command \Rightarrow precedence).
- bare objects cannot move without pragmatic \& phonological effects in Turkish (Öztürk, 2005, a.o.)
- bare objects can survive in string-sharing structure without such effects \Rightarrow no remnant movement
(33) Ali çay __, ve Veli de kahve iç-ti.

A . tea and V . CONTR coffee drink-PAST
'Ali tea-drank, and Veli coffee-drank.'

